Predicting Filtration Time and Maximizing Throughput in a Pressure Filter

Kerry A. Landman and Lee R. White
Advanced Mineral Products Centre, Dept. of Mathematics, University of Melbourne, Parkville 3052, Victoria, Australia

The modeling of pressure filtration of flocculated suspensions using compressional rheology and a knowledge of compressional yield stress $P_y(\phi)$ and a hydraulic resistance factor $r(\phi)$ (ϕ is the local volume fraction of solids) is shown to yield an initial solids loading that maximizes the throughput of the filter. The optimal initial height h_0 is such that the filtration time to reach a specified average volume fraction as output equals the handling time for the filter press. The maximum throughput of the press is then examined as a function of the remaining control parameters, the initial solids volume fraction ϕ_i, and the applied piston pressure ΔP. The dependence of filtration time on ϕ_i/ϕ_0 (where ϕ_0 is the volume fraction of solids at infinite time under applied pressure ΔP) enables the construction of a simple numerical model for the pressure filtration process, which accurately approximates predictions of the full compressional rheology model.

Introduction

Solid/liquid separation by pressure filtration is a common industrial process that many workers (e.g., Terzaghi and Peck, 1948; Sivaram and Swamee, 1977; Phillip and Smiles, 1982; Smiles and Kirby, 1987; Banks, 1985; Shirato et al., 1982; Landman et al., 1991, 1995) have modeled.

The key to a physical understanding of the pressure filtration process is the recognition of a solids or particle stress in addition to the hydrostatic or fluid stress. These two stresses add to comprise the applied piston pressure and their contributions to the total pressure vary through the filter cell and as a function of time of filtration. Although it was common in the modeling to assume the particle stress was a function of local particle concentration, the physical nature of that assumption was not clear until Buscall and White (1987) explained the particle stress as a compressive yield stress $P_y(\phi)$.

They postulated that the network of particles by virtue of the interparticle attractive forces in the case of flocculated systems (or frictional and steric forces in the case of stable irregularly shaped particles) could behave as a solid at a volume fraction ϕ until the applied particle stress exceeded the compressive yield stress for that volume fraction, at which stage collapse of the structure and local volume fraction increase will occur. The further assumption that the collapse process is rapid compared to typical process times implies that the particle stress at a point in the suspension is always only infinitesimally above the compressive yield stress at the local volume fraction. The functional form of $P_y(\phi)$ is shown in Figure 1. This stress is a good representation of the particle mechanics for fractal networks, where spontaneous rearrangement of the network is occurring on long time scales with respect to the process time. For stable dispersions, $P_y(\phi)$ is the osmotic pressure.

Buscall and White (1987) identified the other significant rheological property in solid/liquid separation, the hydraulic resistance or hindered settling factor $r(\phi)$. The hydrodynamic force F_{Hy} on the particle network per unit suspension volume is given by

$$ F_{Hy} = -[\lambda(w-w)] r(\phi) \phi \frac{\phi}{V_p}, \quad (1) $$

where

- $\lambda = $ Stokes drag parameter for average particle
- $v(w) = $ average local particle (fluid) velocity
- $V_p = $ average particle volume

We require

$$ r(\phi) \rightarrow 1 \quad \text{as} \quad \phi \rightarrow 0 $$

Correspondence concerning this article should be addressed to L. R. White.
Figure 1. Rheological parameters in solid/liquid separation shown as a function of volume fraction.

and expect it to be a monotonic increasing function of local volume fraction (the functionality being dependent on the particle network structure) reflecting the hydrodynamic interference on any given particle by its neighbors (see Figure 1). Alternatively, it may be treated as an inverse Darcy permeability for flow through the local particle network.

Methods for measuring $P_s(\phi)$ and $r(\phi)$ are discussed in Landman and White (1994). These methods have been used successfully by a number of experimenters. The resulting yield stress estimates have been fitted with power-law and exponential functions (Eberl et al., 1995; Eckert et al., 1996; Miller et al., 1996; Channell and Zukoski, 1997; Green, 1997). The hindered settling factor has also been fitted with various empirical relationships (Auzerais et al., 1990; Eberl et al., 1995; Green, 1997); the models are fairly insensitive to the form of $r(\phi)$. Later we choose some typical type of functional forms for these rheological functions.

If we consider a one-dimensional treatment of the pressure filtration process, we must describe $\phi(z,t)$ the volume fraction at height z above the filter membrane as a function of time (see Figure 2). In this article we consider the filtration process starting at zero time, with a constant piston pressure ΔP applied to the suspension in which the initial volume fraction ϕ_0 is uniform with an initial piston height h_0. From a process point of view, we monitor $h(t)$ and seek to determine how the control factors ϕ_0, h_0, ΔP may affect the throughput of the pressure filtration process.

The fluid flux through the filter membrane is dh/dt at time t and the corresponding fluid pressure drop across the membrane is $-Rdh/dt$, where R is the hydraulic resistance of the membrane. At the membrane, the sum of particle and fluid stresses is then

$$P_s[\phi(0,t)] - R \frac{dh}{dt} = \Delta P. \quad (2)$$

If we can neglect the membrane resistance in comparison with the resistance of the filter bed, then the volume fraction of solids at the membrane is determined by

$$P_s[\phi(0,t)] = \Delta P(t). \quad (3)$$

In the present case, where ΔP is a constant from $t = 0$, the volume fraction at the membrane is ϕ_∞ (the infinite time volume fraction in the filter bed) given by

$$P_s[\phi_\infty] = \Delta P. \quad (4)$$

From the form of $P_s(\phi)$ given in Figure 1, we must consider two regimes of compression. If ϕ_0 is smaller than ϕ_q (the volume fraction below which particle concentration is too small to permit a percolated network to span the filter press), then particles (flocs) cannot transmit stress. Thus, in this ϕ_0 regime, there will be a region near the piston where the entire applied stress is carried by the fluid pressure. In the absence of gravity (which may be neglected where sedimentation times are large compared to filtration times), there is no
physical mechanism to change the local concentration of particles in this unnetworked region. Of course the fluid flux through the membrane leads to the buildup of particle concentration there and the establishment of the particle network. The volume fraction at the membrane moves (essentially instantly) to its final value of \(\phi_0 \) as the piston pressure \(\Delta P \) is applied. With time a bed of networked particles grows from the membrane toward the piston. Thus for \(\phi_0 < \phi_c \), the initial stage of filtration is characterized by the growth of the compact bed, above which there is a region extending to the piston, with the initial volume fraction of particles \(\phi_0 \). Note that the volume fraction of particles in the compact bed is not uniform, varying from \(\phi_0 \) to \(\phi_c \) at the top of the bed, since the particle stress falls to zero at this point.

At a certain time \(t_c \), the compact bed height reaches the piston. For \(t > t_c \), the piston pressure is shared by the fluid and particles at all points in the filter press, and the network spanning the vessel is compressed. The compression stage lasts from \(t_c \) to infinite time, at which stage, the piston ceases to move and uniform volume fraction \(\phi_c \) is established everywhere in the press. The network pressure at infinite time is everywhere \(\Delta P \) and the fluid pressure is everywhere zero.

In the second filtration regime \(\phi_0 > \phi_c \), and the network spans the press from \(t = 0 \). Application of a piston pressure results in compression everywhere in the press, as local volume fractions increase monotonically with time to the infinite time value of \(\phi_c \), as before. No shock wave corresponding to the top of a compact bed moves through the press in this filtration regime.

The equations governing the filtration process have been derived by many workers (e.g., Landman et al., 1995) and may be summarized by a diffusion equation for the local volume fraction

\[
\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial z} \left[D(\phi) \frac{\partial \phi}{\partial z} - \frac{\phi}{\Delta t} \right],
\]

where

\[
D(\phi) = \left(\frac{V_e}{\lambda} \right) \frac{dP(\phi)/d\phi}{r(\phi)} \left(1 - \phi \right)^2
\]

plays the role of a \(\phi \)-dependent diffusion coefficient whose form is shown in Figure 1. The initial and boundary conditions on Eq. 5 are

\[
\phi(0,t) = \phi_c \quad (t > 0)
\]

\[
\frac{\partial \phi}{\partial z}(h,t) = 0 \quad (t > 0)
\]

\[
\int_0^{H(t)} dz \phi(z,t) = \phi_c h_0 \quad (t > 0)
\]

\[
\phi(z,0) = \phi_0 \quad (0 < z < h_0)
\]

As discussed in Landman et al. (1995), boundary condition (Eq. 8) is a consequence of fluid and particle velocities at the piston being equal to the flux per unit area through the membrane. Condition 9 serves to determine \(h(t) \) and reflects conservation of total particle volume during the process.

It will prove convenient to introduce the following scalings

\[
Z = \frac{z}{h_0}
\]

\[
H(T) = \frac{h(t)}{h_0}
\]

\[
T = \frac{t D_c}{h_0^2} \left(\frac{\phi_c}{\phi_0} \right)^2
\]

where

\[
D_c = D(\phi_c).
\]

The filtration model is then written as

\[
\frac{\partial \phi}{\partial T} = \frac{\partial}{\partial Z} \left[D(\phi) \frac{\partial \phi}{\partial Z} - \frac{\phi}{\partial T} \right],
\]

with

\[
\phi(0,T) = \phi_c
\]

\[
\frac{\partial \phi}{\partial Z}(H,T) = 0
\]

\[
\int_0^{H(T)} dz \phi(Z,T) = 1
\]

\[
\phi(Z,0) = \phi_0 \quad (0 < Z < 1)
\]

These equations form a complete solution of pressure filtration, but the numerical solution of the nonlinear diffusion equation with up to two moving boundaries is complicated and does not lend itself easily to engineering design.

In the rest of this article two important aspects of pressure filtration are investigated—optimizing the filtration throughput and a simple approximate method for determining the filtration time. We examine these quantities as functions of the control parameters \(h_0 \), \(\phi_0 \), \(\phi_c \). This knowledge allows for some powerful conclusions about the design of pressure-filter operations.

Optimization of Filtration Throughput

The throughput \(Q \) of a batch device such as a filter press can be defined as the total amount of solid processed in the operation divided by the total time it takes to perform the process. For a filter press, this total time is made up of two components, the time to filter from initial volume fraction to the output volume fraction of solids \(t_f \), and the handling time for the operation \(t_h \), which comprises all the assembly, load-
ing, unloading, and disassembly operations that must occur
to process a batch. To a reasonable approximation we can
take \(t_h \) to be independent of the amount of material to be
processed.

Thus we can write for the throughput per unit area of filter
membrane

\[
Q = \frac{\phi_0 h_0}{t_f + t_h},
\]

where \(\phi_0 h_0 \) is the solids volume processed in one batch. Ap-
lication of a piston pressure \(\Delta P \) would achieve a uniform
final volume fraction \(\phi_\infty \) given by Eq. 4, but only at infinite
time. In practice the filtration would be stopped at a finite
time \(t_f \) (\(T_f \) in scaled time), when the average volume fraction
in the press is given by

\[
\langle \phi \rangle = f \phi_\infty,
\]

where \(f \) is a fraction close to unity. In terms of the scaled
piston height,

\[
H(T_f) = \frac{1}{f} H_\infty,
\]

where

\[
H_\infty = \frac{\phi_0}{\phi_\infty}
\]

is the scaled piston height at infinite time. The filtration
model described by the scaled equations (Eqs. 15–20) does
not involve the initial height \(h_0 \) of the system, so that the
scaled filtration time \(T_f \) is given by

\[
T_f = T_f(\phi_0, \phi_\infty, f),
\]

the functionality depending on the form of \(d(\phi) \). It follows
from Eq. 13 that in real time

\[
t_f = \frac{h_0^2}{h_0^2 + t_h},
\]

where

\[
\tau_f = \left(\frac{\phi_0}{\phi_\infty} \right)^2 \frac{T_f}{D_\infty}.
\]

The throughput is then a peaked function of the initial load
height \(h_0 \):

\[
Q = \frac{\phi_0 h_0}{h_0^2 \tau_f + t_h}
\]

and is maximal \((dQ/dh = 0)\) when

\[
t_f = t_h
\]

or

\[
h_0^{\max} = \left(\frac{t_h}{\tau_f} \right)^{1/2}.
\]

The optimal throughput is then

\[
Q_{\max} = \frac{\phi_0}{2(\tau_f t_h)^{1/2}},
\]

and we can write

\[
Q(h_0) = Q_{\max} \frac{2(h_0/h_0^{\max})}{1 + (h_0/h_0^{\max})^2},
\]

which is displayed in Figure 3.

If one is interested in operating a filter press at maximum
throughput, then the simple result follows from our
model—load the filter so that the filtration time is equal to
the handling time. This result provides a simple rule of thumb
for pressure-filter operation. As far as we know, this is a new
finding and is not known or used in the industry.

A similar result obtains for the vacuum filter where initial
height \(h_0 \) is not an appropriate parameter. In this form of
filtration, where solids are deposited on the filter membrane
from an essentially infinite amount of suspension at volume
fraction \(\phi_0 \) by the fluid flow through the membrane, the
amount processed is determined by the filtration time \(t_f \)—the
time for which unit area of filter membrane is subjected to
the vacuum.

In vacuum filtration we are always operating in the com-
pact-bed formation regime. It is well known (e.g., Landman
et al., 1995) that in this regime, the volume of filtrate ex-
pressed is proportional to the square root of filtration time,
provided the membrane resistance is negligible. The material
deposited on the membrane in time \(t_f \) is proportional to the
filtrate volume and therefore increases as \(t_f^{1/2} \). We assume
here that no shearing processes in the slurry affect the buildup

![Figure 3. Filter-press throughput Q as a function of ini-
tial loading height \(h_0 \).](image)
of the compact bed. After application of the vacuum, the material is removed and the membrane cleaned before reapplying the suction. We denote this time as the handling time \(t_h \) for the process and again assume it is essentially independent of the amount of solids deposited.

Thus, for vacuum filtration, we can write for the throughput

\[
Q^{\text{vac}}(t_f) = \frac{K^{1/2}}{t_f + t_h},
\]

where \(K \) is a function of \(\phi_0 \) and the vacuum pressure but is independent of \(t_f \). The throughput is maximal \((dQ^{\text{vac}}/dt_f = 0) \) when Eq. 29 is satisfied and

\[
Q^{\text{max}} = \frac{K}{2t_h^{1/2}}.
\]

In the remainder of this article we concentrate on the pressure filtration case only.

Dependence of \(Q_{\text{max}} \) on \(\phi_0, \Delta P \)

The filtration model has allowed us to dispose of the parameter \(h_0 \). We can now examine filtration performance as a function of \(\phi_0 \) and \(\Delta P \) by examining \(Q_{\text{max}} \). Combining Eqs. 31 and 27, we can write

\[
Q_{\text{max}} = \phi_s D_{\phi}^{1/2} / 2t_h^{1/2} T_f^{1/2},
\]

where we have the scaled filtration time \(T_f \) as a function of \(\phi_0 \) and \(\phi_s \) as well as the stopping fraction \(f \), as in Eq. 25.

To illustrate the dependence of \(T_f \) and \(Q_{\text{max}} \) on \(\phi_0 \) and \(\phi_s \), we resort to numerical calculation on a model system. We choose typical parameter values

\[
P_s(\phi) = k \left(\frac{\phi}{\phi_s} \right)^5 - 1
\]

\[
r(\phi) = (1 - \phi)^{-3.5}
\]

where

\[
\phi_s = 0.1
\]

and we choose piston pressures

\[
\frac{\Delta P}{k} = 10, 100.
\]

It is not necessary to specify the constant \(k \) or the value of \((\lambda/V_p) \), which enters the definition of \(D_{\phi} \), since the scaled diffusion equation that models the process does not require them.

Using Eq. 4, the final volume fraction \(\phi_f \) corresponding to the choices of \(\Delta P \) previously, is, from Eq. 36,

\[
\phi_f^{10} = 0.1615
\]

\[
\phi_f^{100} = 0.2517.
\]

The stopping fraction \(f \) used in these calculations was

\[
f = 0.95, 0.99.
\]

The numerical technique for solving Eqs. 15–20 was described previously (Landman et al., 1991).

In Figure 4 we plot the filtration time \(t_f \) as a function of initial volume fraction \(\phi_0 \) for stopping fractions \(f = 0.95, 0.99 \) for the two values of applied pressure. For the region \(\phi_0 < \phi_s \), the filtration time is comprised of a compact-bed formation time \(t_c \) and a compression time. The magnitude of the compact-bed formation time is shown also. For \(\phi_0 > \phi_s \), the compact-bed formation time \(t_c \) is zero and \(t_f \) is entirely compression time. Interestingly, as \(\phi_0 \) tends to zero, the stopping
fraction appears to be unimportant and compression time tends to zero. Filtration time is dominated by compact-bed formation in this limit and tends to zero, since the bed height (the source of hydraulic resistance) vanishes, and, in the absence of membrane resistance, filtration is essentially instantaneous. As \(\phi_0 \rightarrow f \phi_s \), the filtration time must again tend to zero, since no filtration need occur to produce the output (Eq. 22) in this trivial limit.

From Eq. 35 we have that

\[
\left(\frac{t_h}{\phi_0^2 D_s} \right)^{1/2} Q_{\text{max}} = \frac{1}{2T_f^{1/2}}.
\]

In Figure 5 we plot this scaled maximum throughput as a function of initial volume fraction \(\phi_0 \) for \(f = 0.95, 0.99 \) and the two values of applied pressure. We note that \(Q_{\text{max}} \) vanishes in the limit \(\phi_0 \rightarrow 0 \) since, although the filtration time is decreasing, the amount of material treated is vanishing with \(\phi_0 \) at a faster rate. Throughput is obviously reduced by making the stopping fraction \(f \) approach unity, since the filtration time \(t_f \) is becoming infinite in this limit.

There is no qualitative difference in the filtration behavior for the two values of the applied pressure. Quantitatively the higher applied pressure produces lower filtration times and higher maximum throughput, but the \(\Delta P \) dependence is not strong, the tenfold pressure increase leading to roughly doubling of the throughput. This is due to the higher volume fraction \(\phi_s \) at the bottom of the bed in the high-pressure case and the increased hydraulic resistance resulting from this, which tends to offset the increased driving pressure.

These figures highlight the following commonsense finding, although again this does not appear to be emphasized in the industry. From a plant-operational point of view, maximum filter-press efficiency is achieved by increasing the initial volume fraction of solids. The "plateau" region around \(\phi_0 = \phi_s \) in Figure 5, suggests that input to a filter could usefully be the output of a prior gravity-thickening process, in which volume fraction of solids would be just a little larger than \(\phi_s \) and which would not sediment appreciably while stored awaiting filtration, if the solids height is not too large.

In Figure 6, we plot the scaled filtration throughput (Eq. 43) as a function of \(\phi_0 / \phi_s \). The curves for a given stopping fraction \(f \) for the different piston pressures \(\Delta P \) are almost coincident. This implies that

\[
T_f = T_f \left(\frac{\phi_0}{\phi_s}, f \right).
\]

Now the scaled equations (Eqs. 15–20) would permit a functionality of the form

\[
T_f = T_f \left(\phi_s, \frac{\phi_0}{\phi_s}, f \right),
\]

but do not strictly allow the functionality implied by Eq. 44 by virtue of their highly nonlinear nature. The empirical fact that \(T_f \) sensibly obeys Eq. 44 leads one to suspect that the full nonlinear diffusion problem might be replaced by a simpler linear problem that could provide an accurate engineering design solution. We pursue this end in the remainder of the article.

Reformulation of the Problem

The moving boundary in the filtration problem corresponding to the piston at \(Z = H(T) \) may be removed and the differential equation simplified by changing to a material coordinate \(w \) (Kirby and Smiles, 1988) defined by

\[
w(Z, T) = \frac{1}{\phi_0} \int_0^Z dZ \phi(Z, T).
\]

We note that

\[
w(0, T) = 0
\]

\[
w(H(T), T) = 1
\]
by virtue of Eq. 19. If we make the change of variable
\[\phi(Z, T) \rightarrow \phi(w, T), \]
the problem may be stated as
\[\frac{\partial \phi}{\partial T} = \phi^2 \frac{\partial}{\partial w} \left(\frac{d(\phi)}{\phi^2} \frac{\partial \phi}{\partial w} \right) \]
(49)
\[\phi(0, T) = \phi_0, \]
(50)
\[\frac{\partial \phi}{\partial w}(1, T) = 0 \]
(51)
\[\phi(w, 0) = \phi_0. \]
(52)
A second simplification comes from the introduction of the void ratio \(e \) defined by
\[e = \frac{1 - \phi}{\phi} = 1 - \phi. \]
(53)
We note from Eq. 46 that
\[Z(w, T) = \phi_0 \int_0^w \frac{dw}{\phi(w, T)}. \]
(54)
and hence that
\[H(T) = \phi_0 \left[1 + \int_0^1 e(w, T) dw \right]. \]
(55)
In terms of the void ratio the problem is stated as (Kirby and Smiles, 1988)
\[\frac{\partial e}{\partial T} = \frac{\partial}{\partial w} \left[\Delta(e) \frac{\partial e}{\partial w} \right] \]
(56)
\[e(0, T) = 1 - \frac{1}{\phi_0} \]
(57)
\[\frac{\partial e}{\partial w}(1, T) = 0 \]
(58)
\[e(w, 0) = \frac{1}{\phi_0} - 1, \]
(59)
where
\[\Delta(e) = \frac{\phi_0^2 D(\phi)}{\phi_0^2 D_w}. \]
(60)
Note that
\[\Delta(e_0) = 1. \]
(61)
These changes of variable have not removed the internal moving boundary that is present when \(\phi_0 < \phi_k (e_0 > e_k) \), which represents the top of the compact bed at \(w = w_k(T) \).
Fortunately, a similarity solution for \(e(w, T) \) exists for \(T \leq T_c \). In fact,
\[e(w, T) = \begin{cases} E \left(\frac{w}{w_c(T)} \right) & (w \leq w_c) \\ e_0 & (w > w_c) \end{cases}, \]
(62)
where
\[w_c(T) = \left(\frac{T}{T_c} \right)^{\frac{1}{2}} \]
(63)
and \(E(X) \) satisfies
\[\frac{d}{dX} \left[\Delta(E) \frac{dE}{dX} \right] + \frac{1}{2T_c} X \frac{dE}{dX} = 0 \]
(64)
\[E(0) = e_\infty \]
(65)
\[E(1) = e_g \]
(66)
\[\Delta(e_g) \frac{dE}{dX}(1) = \frac{e_0 - e_\infty}{2T_c}. \]
(67)
Equation 67 is the shock-curve equation and may be directly derived by integrating Eq. 56 across the discontinuity at \(w = w_c \). Solving Eqs. 64–67 determines \(T_c \) and \(e(w, T) \) for \(T \leq T_c \).
In the domain \(T > T_c \) we must solve Eqs. 56–58, with Eq. 59 replaced by the initial condition
\[e(w, T_c) = E(w), \]
(68)
since
\[w_c(T_c) = 1. \]
(69)
Thus, we must solve a nonlinear diffusion equation for \(e(w, T) \). In general \(\Delta(e) \), displayed in Figure 7, is a highly nonlinear function of its argument.
A simpler problem would be to replace \(\Delta(e) \) by a constant to produce a linear diffusion equation that is easily solvable. The rapidly varying nature of \(\Delta(e) \) makes the choice of this constant nonobvious. Further, we note that for large times, the diffusion equation tends to
\[\frac{\partial e}{\partial T} = \frac{\partial^2 e}{\partial w^2} \]
(70)
using Eq. 61. If the filtration time is large (\(f \sim 1 \)), it will be important to reproduce this asymptotic time dependence.
It seems attractive to replace \(\Delta(e) \) by unity (its value for \(e = e_\infty \) for \(e_\infty < e < e_0 \)). Numerical comparison of this approximation with the full nonlinear solution is shown in Figures 8a, 8b for the numerical example introduced earlier. The agreement is not good. The details of this approximation are not given here in view of the inaccuracy of the approximation.
Figure 7. Functions $D(\phi)$ and $\Delta(e)$ that play the role of the diffusion coefficient; note that $\Delta(e)$ is zero for $e > e_\infty$ because the diffusion coefficient $D(\phi)$ vanishes for $\phi < \phi_g$ by virtue of its definition.

Mean Action Time $T^*(w)$

The mean action time in a diffusion equation (McNabb, 1975) is a measure of the time taken for the disturbance introduced at the boundary to diffuse past the observation point. As such it must be a function of position in space. The solution $e(w, T)$ as a function of T for a fixed volume of w is displayed in Figure 9. Clearly the mean action time $T^*(w)$ is located in the neighborhood of the peak in $\partial e(w, T)/\partial T$.

A suitable definition for our nonlinear problem is

$$T^*(w) = \frac{\int_0^\infty dT \cdot T \frac{\partial}{\partial T} \int_{e_\infty}^{e_0} e_{w, T} \, de \Delta(e)}{\int_{e_\infty}^{e_0} de \Delta(e)}, \quad (71)$$

where the time-derivative term in the integrand plays the role of the peaked function that serves to concentrate T in the neighborhood of the peak in $\partial e(w, T)/\partial T$. An integration by parts gives us a more useful, but not too obvious, definition of the mean action time, namely,

$$T^*(w) = \frac{\int_0^\infty dT \int_{e_\infty}^{e_0} e_{w, T} \, de \Delta(e)}{\int_{e_\infty}^{e_0} de \Delta(e)}. \quad (72)$$

We see in Appendix A that $T^*(w)$ satisfies

$$\frac{d^2 T^*}{dw^2} = -\frac{e_0 - e_\infty}{\int_{e_\infty}^{e_0} de \Delta(e)}, \quad (73)$$

with initial conditions

$$T^*(0) = 0 \quad (74)$$

$$\frac{dT^*}{dw}(0) = \frac{e_0 - e_\infty}{\int_{e_\infty}^{e_0} de \Delta(e)}. \quad (75)$$

This set of equations serves to uniquely determine $T^*(w)$ for a given $\Delta(e)$.

Let us suppose that the filtration time T_f for our nonlinear
where \(\theta(e) \) is the unit step function

\[
\theta(e) = \begin{cases}
1 & (e > 0) \\
0 & (e < 0)
\end{cases}
\]

This choice of linear replacement is solvable, but lacks the feature that the problem reduces asymptotically to Eq. 70. Note that for \(e_0 < e_g (\phi_0 > \phi_g) \), Choices 1 and 2 are identical.

Choice 3.

\[
\Delta^{(3)}_{\text{eff}} = \theta(e^* - e),
\]

where to ensure the mean action time quality we require

\[
\int_{e_g}^{e_0} \Delta(e) \, de = e^* - e_0
\]

This choice preserves the property \(\Delta(e) = 0 \) for \(e > e_g \), but also reduces to Eq. 70 asymptotically. Note that the quantity \(e^* \) is always less than \(e_0 \).

In Figure 10, the three “linear” alternative \(\Delta(e) \)’s are displayed for \(e_0 > e_g \). There are an infinity of other “linear” replacements that use both \(\Delta_{\text{eff}} (e < 1) \) and \(e^* \) parameters while preserving the area under the \(\Delta(e) \) curve. We did not investigate this alternative since there did not appear to be any obvious way of removing the degree of freedom available in the choice of \(\Delta_{\text{eff}} \) and \(e^* \) in this approach. Further, it does not produce Eq. 70 for large times.

In Figures 11, 12, and 13 we compare the predictions of the three alternative choices to the full nonlinear calculation of the maximum throughput \(Q_{\text{max}} \). We see that only Choice 3 appears to give an accurate approximation to \(Q_{\text{max}} \) over the range of \(\Delta P, f, \) and \(\phi_0 \) used. In view of the inadequacy of the approximations for Choices 1 and 2, we have not bothered to display here the analytical results that may be obtained from these approximations.
Figure 11. Comparison of the full numerical solution with the approximate linear solution using Eq. 76 (Choice 1): (a) $\Delta P/k = 10$; (b) $\Delta P/k = 100$.

Accurate Linear Approximation

In Choice 3, we solve

$$\frac{\partial e}{\partial T} = \frac{\partial}{\partial w} \left[\theta(e^* - e) \frac{\partial e}{\partial w} \right]$$

subject to

$$e(0, T) = e_\infty$$

$$\frac{\partial e}{\partial w}(1, T) = 0$$

$$e(w, 0) = e_0,$$

where e^* is given by Eq. 80. Since $e^* < e_0$ for all e_0, we always have a compact-bed formation zone in this approximation.

A similarity solution for $0 < T < T_c$ of the form

$$e(w, T) = \begin{cases} E^* \left(\frac{w}{w_c(T)} \right) & (w < w_c) \\ e_0 & (w_c < w < 1) \end{cases}$$

exists, with

$$w_c(T) = \left(\frac{T}{T_c} \right)^{1/2},$$

where $E^*(x)$ satisfies

$$\frac{d^2 E^*}{dx^2} + \frac{1}{2T_c} X \frac{dE^*}{dX} = 0,$$

with

$$E^*(0) = e_\infty.$$

Figure 12. Comparison of the full numerical solution with the approximate linear solution using Eq. 77 (Choice 2): (a) $\Delta P/k = 10$; (b) $\Delta P/k = 100$.
Figure 13. Comparison of the full numerical solution with the approximate linear solution using Eq. 79 (Choice 3): (a) $\Delta P/k = 10$; (b) $\Delta P/k = 100$.

\[E^*(1) = e^* \]
\[\frac{dE^*}{dX}(1) = \frac{e_0 - e^*}{2T_c}. \]

Here the third boundary condition allows us to solve for the unknown T_c.

The similarity solution is

\[E^*(X) = e_\infty + \frac{e_0 - e^*}{2T_c} \int_0^X dx e^{(1-x^2)\alpha T_c}, \]

where

\[\frac{e^* - e_\infty}{e_0 - e^*} = \sqrt{\pi} \alpha e_\infty^2 \text{erf}(\alpha) \]

and

\[\alpha = \frac{1}{2T_c^{1/2}}. \]

In the compression region $T_c < T < \infty$ we solve

\[\frac{\partial e}{\partial T} = \frac{\partial^2 e}{\partial w^2} \quad (0 < w < 1) \]

subject to boundary conditions, Eqs. 57 and 58. The initial condition is

\[e(w, T_c) = E^*(w). \]

The solution of this problem is

\[e(w, T) = e_\infty + \sum_{n=0}^{\infty} A_n \sin [(n+1/2)\pi w] e^{-(n+1/2)^2\pi^2(T-T_c)}. \]

where

\[A_n = 2 \int_0^1 dw [E^*(w) - e_\infty] \sin [(n+1/2)\pi w]. \]

Substituting Eq. 91 for $E^*(w)$ and interchanging orders of integration, we obtain

\[A_n = (e^* - e_\infty) F_n, \]

where

\[F_n = \frac{4}{\pi^{3/2} (n+1/2) \text{erf}(\alpha)} \int_0^\alpha \text{d}z e^{-z^2} \cos \left\{ (n+1/2) \frac{\pi z}{\alpha} \right\}. \]

Note that F_n is a function only of the material property

\[\beta = \frac{e^* - e_\infty}{e_0 - e^*} = \frac{\int_{e_\infty}^{e_0} \text{d}e \Delta(e)}{e_0 - e_\infty - \int_{e_\infty}^{e_0} \text{d}e \Delta(e)} \]

through Eq. 92. In Figure 14, we plot the first few F_n as functions of β.

When the filtration time T_f is greater than the bed formation time T_c (certainly the case as $f \to 1$), we can use Eq. 96 to determine T_f. From Eq. 55 we have that

\[H(T) = H_a + \phi_0 \sum_{n=0}^{\infty} \frac{A_n}{(n+1/2)^2 \pi^2} e^{-(n+1/2)^2\pi^2(T-T_c)}. \]

so that

\[H(T_f) = \frac{1}{f} H_a = H_a + \phi_0 \sum_{n=0}^{\infty} \frac{A_n}{(n+1/2)^2 \pi^2} e^{-(n+1/2)^2\pi^2(T_f-T_c)}. \]
Figure 14. Fourier coefficients $F_n (n=0, 1, 2)$ as functions of the material property β defined in Eq. 100.

Provided

$$T_f - T_c \gg \frac{4}{9\pi^2},$$

we can abbreviate Eq. 102 to

$$\left(\frac{1}{f} - 1\right)H_n = \frac{2\phi_0 A_0}{\pi} e^{-\pi(f-T_c)\phi_0} + \ldots.$$ (104)

Thus we can write

$$T_f = T_c + \frac{4}{\pi^2} \ln \left(\frac{2\phi_0 A_0 f}{\pi(1-f)}\right) + \ldots.$$ (105)

It is possible that the stopping fraction f or initial volume fraction ϕ_0 is such that T_f occurs during the compact-bed formation stage. In this case (see Appendix B)

$$T_f = T_c e^{-\frac{1}{f} \left(1 + e^x - \frac{1}{1 + e^x}\right)^2}.$$ (106)

In Figure 15 we display T_c as a function of β as calculated from Eqs. 92 and 93. For small β the asymptotic result (Hill and Dewynne, 1987)

$$T_c = \frac{1}{2}\left\{\frac{1}{\beta + \frac{1}{3} - \frac{2\beta}{45} + \frac{16\beta^2}{945} + \ldots}\right\}$$

may be used with the two-term approximation

$$T_c \approx \frac{1}{2}\left[\frac{1}{\beta + \frac{1}{3}}\right],$$

accurate to a few percent for $0 < \beta \leq 2$. For large β, we can use the asymptotic result

$$T_c = \left[4\ln\left(\frac{\beta + 1}{\sqrt{\pi}}\right) - 2\ln\left(\frac{\beta + 1}{\sqrt{\pi}}\right) + O\left(\frac{1}{\beta \ln \beta}\right)\right]^{-1},$$

accurate to a few percent for $\beta \geq 4$. For the region between these asymptotic results, T_c may be read from Figure 15 or calculated from Eq. 92.

Conclusions and Implications to Pressure-Filter Design

The analysis of the maximized throughput together with the linear approximate method allows us to make some strong conclusions about pressure-filter design. We know how the maximized throughput depends on the filtration time and have been able to obtain simple accurate estimates of the filtration time in terms of the rheological parameters that define the mechanics of the suspension.

In the first place, the rheological functions $P_f(\phi)$ and $D(\phi)$ for the suspension must be measured, the ϕ_n obtained from the chosen applied pressure (Eq. 4), and the desired stopping fraction f chosen.

The key question in pressure-filter design asks what filter area is required to process a volumetric throughput q in the plant, from an initial solids fraction ϕ_0 to a final average volume fraction f_ϕ.

The results show that to optimally process solids to average volume fraction f_ϕ at a rate q, we must load our filter press so that the filtration time is equal to handling time for the press, as discussed earlier.

The filter surface area required is calculated by

$$A = \frac{q}{Q_{max}} = \frac{\phi_0 D^{1/2} \bar{t}_f^{1/2}}{2 q t_f^{1/2} \bar{t}_f^{1/2}}.$$ (111)
The optimal loading is

\[
h_{\text{opt}}^\text{max} = \left(\frac{\phi_0}{\phi_*} \right) \frac{D(4)^{1/2} \sqrt{T_f}}{T_f^{1/2}}, \quad (112)
\]

and this clearly shows its dependence on the scaled filtration time \(T_f\).

In order to calculate this quantity, both \(e^*\) and \(\beta\) must be calculated for \(\phi_0\) and \(\phi_*\) from \(D(\phi)\) data from Eqs. 80 and 100. Then \(T_f\) is given by

\[
T_f = \left(T_f^* + \frac{4}{\pi^2} \ln \frac{2F_0}{\pi} + \frac{4}{\pi^2} \ln \frac{f(d_0(e^* - \varepsilon_0))}{1 - f} \right), \quad (113)
\]

where the \(T_f(\beta)\) and \(F_0(\beta)\) may be computed by Eqs. 92, 93 and 99 or, with reasonable accuracy, simply taken off Figures 14 and 15.

This value can be substituted back into Eq. 111 to obtain the required filter surface area, and optimal loading (Eq. 112).

If we regard \(\phi_0\) and \(f\phi_*\) as fixed, we can still exert a degree of freedom through the choice of \(\phi_*\), which is controlled by the applied pressure \(\Delta P\). By increasing \(\Delta P\) and decreasing the stopping fraction \(f\) (to keep \(f\phi_*\) constant), we cause \(Q_{\text{max}}\) to increase, as shown in Figures 13a, 13b.

The design of a pressure-filter operation is, by this procedure, reduced to a knowledge of the quantity \(e^*\) as a function of \(\phi_0\) and \(\phi_*\). This in turn requires a knowledge of \(D(\phi)\) over the range of void ratios spanned. It is therefore important to devise straightforward methods of estimating \(D(\phi)\) from experimental filtration data on the bench in order to usefully scale up the operation to the plant. We will address this matter in a subsequent article.

Acknowledgment

The authors thank the Australian Research Council and the International Fine Particle Research Institute for financial support.

Literature Cited

Green, M. D., Characterization of Suspensions in Settling and Compression, PhD Thesis, Univ. of Melbourne, Melbourne, Australia (1997).

Appendix A: Properties of \(T^*(w)\)

We note that, as should be expected, \(T^*(0) = 0\) (A1) by virtue of Eq. 57. In addition, we see that

\[
\frac{d^2T^*}{dw^2}(w) = \int_0^\infty \frac{\tau^2}{\tau^*} f(w, \tau) \, d\tau \left[\frac{\Delta(e) \, \frac{\partial e}{\partial w}}{\varepsilon_*} \right] \, d\varepsilon \left[\frac{\partial}{\partial w} \right] \int_\varepsilon^\infty \, d\varepsilon (A3)
\]

\[
= - (\varepsilon_0 - \varepsilon_\Phi) \int_\varepsilon^\infty \, d\varepsilon (A5)
\]

To completely determine \(T^*(w)\), we need another boundary condition. We note that

\[
\frac{dT^*}{dw} (0) = \int_0^\infty \frac{\tau^2}{\tau^*} f(0, \tau) \, d\tau \left[\frac{\Delta(e) \, \frac{\partial e}{\partial w}}{\varepsilon_*} \right] \, d\varepsilon \left[\frac{\partial}{\partial w} \right] \int_\varepsilon^\infty \, d\varepsilon (A6)
\]

with the aid of Eq. 61. From Eq. 55 we have that

\[
\frac{dH}{dT} = \phi_0 \int_0^r \frac{d\varepsilon}{\partial w} (w, \tau) \left[\frac{\Delta(e) \, \frac{\partial e}{\partial w}}{\varepsilon_*} \right] \, d\varepsilon \left[\frac{\partial}{\partial w} \right] \int_\varepsilon^\infty \, d\varepsilon (A8)
\]
after integration and use of Eq. 58. We can therefore write

\[
\frac{dT^*}{dw}(0) = - \frac{1}{\phi_0} \int_0^\infty \frac{dH}{dT} \int_{e_*}^{e_0} de^* \Delta(e) \tag{A10}
\]

\[
= (e_0 - e_*) \int_{e_*}^{e_0} de^* \Delta(e) \tag{A11}
\]

with the aid of Eqs. 24, 57 and 59.

Appendix B: \(T_f \) for \(T_f < T_c \)

If \(T_f < T_c \), then, clearly,

\[
H(T_c) < H(T_f) = \frac{1}{f} H_a. \tag{B1}
\]

From Eq. 55 we have that

\[
H(T_c) = \phi_0 \left[1 + \int_0^1 dX E^*(X) \right], \tag{B2}
\]

so that \(T_f < T_c \), provided

\[
\frac{1}{f \phi_a} - 1 > \int_0^1 dX E^*(X). \tag{B3}
\]

The similar solution Eq. 91 is used to show that

\[
\int_0^1 dX E^*(X) = e_0 - (e_0 - e^*) e^{*^2}. \tag{B4}
\]

Thus \(T_f < T_c \), provided

\[
\frac{1}{f \phi_a} - 1 > e_0 - (e_0 - e^*) e^{*^2}. \tag{B5}
\]

In this regime, we find \(T_f \) as follows. In the similarity regime, we have that

\[
H(T) = 1 - [1 - H(T_c)] \left(\frac{T}{T_c} \right)^{1/2} \tag{B6}
\]

from Eq. 55. Thus

\[
H(T_f) = \frac{1}{f} H_a = 1 - [1 - H(T_c)] \left(\frac{T_f}{T_c} \right)^{1/2} \tag{B7}
\]

From Eq. 55 we have that

\[
H(T_c) = \phi_0 \left[1 + \int_0^1 dX E^*(X) \right], \tag{B2}
\]

so that \(T_f < T_c \), provided

\[
\frac{1}{f \phi_a} - 1 > \int_0^1 dX E^*(X). \tag{B3}
\]

The similar solution Eq. 91 is used to show that

\[
\int_0^1 dX E^*(X) = e_0 - (e_0 - e^*) e^{*^2}. \tag{B4}
\]

Manuscript received Apr. 28, 1997, and revision received Aug. 11, 1997.