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Abstract. We consider the minimum energy problem for a mobile ad
hoc network, where any node in the network may communicate with any
other via intermediate nodes. To provide quality of service, the network
must be connected, even if one or more nodes drop out. This motivates
the notion of k-connectivity. The minimum energy problem aims to op-
timise the total energy that all nodes spend for transmission. Previous
work in the literature includes exact mixed-integer programming formu-
lations for a 1-connected network. We extend these models for when the
network is k-connected, and compare the models for various network
sizes. As expected, the combinatorial nature of the problem limits the
size of the networks that we can solve to optimality in a timely manner.
However, these exact models may be used for the future design of mobile
ad hoc networks and provide useful benchmarks for heuristics in larger
networks.

Key words: Minimum transmission, exact model, k-connectivitiy, mixed-
integer programming

1 Introduction

We study the problem of a wireless ad hoc network. In such a network, mobile
phones connect to each other without the intermediacy of a transmitting tower.
Instead, each phone communicates directly with its peers. To ensure proper com-
munication both phones must be able to reach each other before a link can be
established. If a phone cannot reach its intended target directly, it may commu-
nicate through a chain of intermediary mobile phones. The underlying topology
of the network is therefore an undirected graph; phones which communicate
directly are linked in the graph.

We wish to find the optimal transmission range for each participant in the
network such that the network is connected — the intention is to preserve battery
life for each user in the network. This problem is known in the literature as the
symmetric, unicast transmission problem ([14]). As a related problem, we can
motivate the asymmetric, unicast transmission problem by data exchange such
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as e-mails and SMS. However, the asymmetric problem is beyond the scope of
this paper.

In the problem studied here, each node within the network can operate at
different transmission energies. Using power attenuation functions, we can define
the range achievable with each energy ([4]). Within the network, a node’s trans-
mission range determines the number of nodes to which it can connect. As a
result, we are interested in constructing range assignments for the network that
satisfy connectivity requirements while minimising the energy expenditure of the
network. However, if one node drops out in a connected graph (for example, if a
phone is turned off), then the graph may no longer be connected. This may lead
to the disconnection of calls. We wish to ensure quality of service by ensuring a
greater level of connectivity. This motivates the notion of k-connectivity.

Definition 1.1 A graph is k-connected if removing any set of k—1 nodes results
in a connected graph.

A k-connected network can absorb the loss of £ — 1 nodes without losing con-
nectivity. Note that a 1-connected network is equivalent to a connected network.

There are two philosophical ways to solve the minimum energy problem —
exact and heuristic solutions. While there have been heuristic solutions for the
k-connected problem, as far as we know there have only been 1-connected exact
models. This paper aims to address this hole in the literature. One of the uses
of a k-connected exact model is that we will now be able to evaluate precisely
the effectiveness of the heuristics for this problem.

From a practical standpoint, in real life each node will have only limited in-
formation on the status of the other nodes. Moreover, if we had full information,
the likely size of the network would prevent a viable exact solution. This moti-
vates the application of a heuristic so that each node can quickly determine a
good transmission range. Shpungin and Segal ([15]) presented such a heuristic,
which they based on an optimal algorithm for solving the same problem on a
linear network. Berend, Segal and Shpungin later improved this heuristic in [2].
Kirousis et al. ([11]) showed that the k-connected solution for a one-dimensional
network can be solved in polynomial time.

A possible approach for the 2-connected case is to solve the 2-connectivity
augmentation problem ([9, 14]). This begins with a connected network and adds
the minimum number of edges such that the network is 2-connected, producing
an approximate solution to the minimum energy problem. Another approach,
used by Shpungin and Segal ([15]), is to find a Hamiltonian cycle in the network.
Hamiltonian cycles are by definition 2-connected, so this provides an approxi-
mate solution for the 2-connected problem, which can also be extended to an
approximate solution for the k-connected problem. Jia et al. ([10]) have pro-
vided approximation algorithms for the 3 and 4-connected cases by searching
for inconnected subgraphs in the network, which are subgraphs which have only
inward edges from the rest of the graph.

From a theoretical viewpoint, we would like to solve the problem to opti-
mality, by constructing an exact model. Often these models take the form of
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integer or mixed-integer programs. Over the last couple of decades, advances in
algorithms for solving large scale mixed-integer programs allow us to consider
problems that were previously computationally unthinkable. Although, as we will
see in Section 5, the computation time grows exponentially with k, we are able
to obtain optimal solutions for networks of up to 18 nodes and 3-connectivity.

Mixed-integer programming models have been considered for both the homo-
geneous problem, where each node must have the same transmission range ([5]),
and the heterogeneous problem, where this restriction does not apply ([8, 12, 16]).
We concentrate on exact solutions in this paper and examine these models closely
in Section 3. However, these models only cover the 1-connected case.

In this paper, we look at the minimum energy problem for both the connected
and k-connected cases using the exact methodology of integer or mixed-integer
programs. In Section 3, we discuss models for the connected minimum energy
problem, including a new model and previous results from Montemanni and
Gambardella ([12]) and Yuan et al. ([16]). In Section 4, we extend these models
to k-connectivity. In Section 5, we implement all of the models, solve them for
varying network sizes, and compare the results. We conclude the paper with a
discussion in Section 6.

2 The homogeneous minimum energy problem

We begin by considering the special case of homogeneous transmission radius,
where every node uses the same transmission radius regardless of the topology of
the network. For this problem, there is an easy solution involving the minimum
spanning tree, which is simple to find. The next theorem was stated in [5], but
not proved. We provide a brief proof.

Theorem 1. The minimum homogeneous transmission radius such that the net-
work is connected is the length of the largest edge of the minimum spanning tree.

Proof. Suppose that the theorem is false and there is a smaller transmission
radius, r, which connects the network. Let the largest edge in the minimum
spanning tree be e. If we now remove e from the minimum spanning tree, the
result is a forest with two trees. Since the minimum transmission radius connects
the network, there must exist two nodes, one from each tree in the forest, which
are at most r distance apart. If we add the edge connecting these two nodes to
the forest, we get a spanning tree which is smaller than the minimum spanning
tree, a contradiction. Therefore the minimum transmission radius is the length
of the largest edge of the minimum spanning tree.

As the minimum spanning tree can be found in polynomial time, this theorem
may provide further insights into obtaining good but easily found upper bounds
on the optimal solution for the heterogeneous problem. Although we will not
investigate such bounds in this paper, we provide the theorem here for literature
completion.
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3 Exact 1-connected models

Now we consider the more complicated heterogeneous problem, where each node
can have a different transmission radius to any other. In this section, we consider
the minimum energy problem when the network need only be 1-connected. First,
we look at existing models in the literature.

3.1 Literature review

Das et al. ([8]) looked at the multicast/broadcast version of the problem and
presented three integer programs to solve it exactly. In this paper, however, we
will focus on formulations that address the symmetric unicast problem or can
be easily translated to it.

Montemanni and Gambardella ([12]) presented two mixed-integer programs
to solve this problem. Both of these models were based on a network flow model,
where we imagine that a source node, s, emits |V| — 1 units of flow (where |V
is the number of nodes in the network). Every other node will absorb exactly 1
unit of flow. If this is possible, then the edges with nonzero flow must span the
graph, and so the network is connected. They represented the flow from node i
to node j by z; ;.

The transmission radius of each node is determined by the indicator variable,
Yi,5, which is 1 if node 7 has enough transmission to reach node j, and 0 otherwise.
To capture the ranges in the objective function, Montemanni and Gambardella
used the idea of ancestor nodes: they defined aé to be the farthest node from ¢
that is closer than j, and a§- = ¢ if j is the nearest node to i. Then they defined
¢ij to be the incremental cost involved in extending the range of node 7 from a’
to j. This is illustrated in Figure 1, where a’, = k, and a}, = j. An advantage of
using ancestor nodes is that the transmission value is not a variable. Therefore
it is a simple task to account for power attenuation in this model (without
transforming it into a nonlinear model).
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Fig. 1. Counting partial range costs using ancestor nodes.
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Using these ideas, and defining A to be the set of all possible edges, they
produced the following model.

MG1: Minimise > cijyig
(i,4)€A

subject to  ¥ij < Yy VY (i,§) € A,al #1i, (1)

L5 < (|V| - 1)yi,j v (Zvj) € A7 (2)

zij < (V] =1y Y (i,) € A, (3)

o V] =1ifi=s,
Z Lij Z Tii = {—1 otherwise, (4)
j:(4,5)€EA j:(4,5) €A

zij € R, (5)

Yij € {0,1}. (6)

The objective function minimises the total energy requirements for all nodes.
Constraint (1) ensures that node ¢ cannot reach node j unless it can also reach its
ancestor node, a’, and constraints (2)—(4) are the flow constraints. The number
of variables and constraints in this model is O(2n?) and O(3n?) respectively.
In their original model, Montemanni and Gambardella defined the flow variable
to be continuous. However, improved computation times may be achieved if we
restrict this variable to be integer and solve the model with the faster methods
available for pure integer programs (as opposed to mixed-integer programs).
Althaus et al. ([1]) later presented a model which is structurally similar to MG1,
so we will not repeat it here.

Montemanni and Gambardella recognised the difficulty in solving this model
for large network sizes and devoted much time to improving the computational
efficiency of their model. To do this, they developed a new model (M G2 below),
which defines z; ; to be 1 if node i communicates with node j. Using the same
notion of ancestor nodes as in the previous model, they forced connectivity
by ensuring that every possible subset of nodes has at least one edge to the
complementary set of nodes (constraint (10)). In doing so, they considered 2/V —
2 sets (the null and full sets need not be considered). This gave the following
model:



6 Burt, Chan and Sonenberg

MG2: Minimise Z Ci.iYij
(i,§)€EA

subject to Yii < Vil Y (i,7) € A, a§» #+4, (7)

Zij < Vi Y (i,j) € E, (8)

Zij < Yji Y (i,j) € E, (9)

> zi;>1 YWV, (10)

{i,j}EEieW,jEV\W
Zij € {0,1}, (11)
vi; € {0,1}. (12)

They also provided a set of valid inequalities to help quicken the computation
time:

yij =1 V(i,j) € Ast. al =i, (13)

Yaii 2 Yiat —Vij ¥ (1.7) € A st aj #1, (14)

Yii > Yij Y (i,5) € Ast. A, k) € Ajal =4, (15)

>y =2V -1), (16)
(i.j)€A

> yii>1 VieV. (17)

JEV s.t. (i,j)€EA

In Section 5, we will see that using these inequalities enable these models to
outperform other models. However, not all of these inequalities are valid for the
k-connected case.

Yuan et al. [16] presented a mixed-integer program for the minimum energy
broadcast problem. They used a multi-commodity flow model, which requires a
large number of constraints and is notoriously difficult to solve but has proven
to be an effective method for difficult problems such as the Travelling Salesman
Problem [13]. In a multi-commodity flow model, a source node s is chosen and
has a different flow for each destination. For each flow, the source emits one unit
of flow and the chosen destination absorbs one unit, while all other nodes do not
emit or absorb.

The model presented in this paper was for the asymmetric broadcast problem,
which requires that one node transmit to all other nodes, possibly without re-
ceiving anything back. In particular, this means that the model does not require
two-way communication between nodes. We have modified the model for the
symmetric unicast problem, which require two-way communication to establish
a link between two nodes, and also requires all nodes to be able to communicate
with each other.

In this model, the indicator variable z;; is 1 if the transmission range of
node ¢ is exactly the distance from ¢ to j (denoted by p;; in this model). As
with the MG1 and MG2 models, this enables the model to easily account for
power attenuation without making it nonlinear.
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E : DijZij

(1,j)EA

Z Zi,5 < 1

J:(i,4)eA

d d __
Z Tij — Z Tji=

J:(GH)eA

1 ifi=s,
—1ifi=d,
0 otherwise,
E Zik

Di,k 2Pi,j

PIREY

Dik>Pi,j

IN

Yij
Yji <

m;‘{j < i
zf; >0,

vi,; € {0,1},
zij €40,1}.

Viev, (18)

VieV, VdeV\{s}, (19)
v(i, j) € 4, (20)
Y(i,5) € A, (21)
V(i,j) € A,d € V\{s}, (22)
23)

24)
)

(
(
(
(25

Constraint (18) forces each node to choose its range exactly, while constraint
(19) represents the multi-commodity flow constraints. Constraints (20)—(22) en-
sure that flow only goes through edges between nodes which are connected (which

happens when y; ; = 1).

3.2 A new model

We introduce a new model, which is again based on network flow. This model
is quite similar to MG1, except that we directly include the transmission range
of node 7 as a continuous variable, r;. We define the distance between nodes 7
and j to be d(i, j). We use y; ; to indicate if nodes ¢ and j are connected (with a
bi-directional link), and z; ; to denote the flow from ¢ to j. We also restrict the
flow variables to be integer.
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BSC : Minimise Zri
i
subject to
T . . .
Yij < 7 VieV,j#i, 26
) (26)
Yij = Yji VieV,j<i, (27)
Lij < (|V| - 1)yi,j v Za] € V, (28)
o [VI-1lifi=s .
Z g Z Yai = { otherwise "€V’ (29)
Ji(i,5)€A Ji(ji)eA
x;; € LT, 30
J
vi,; € {0,1}. (31)

Constraints (26) and (27) ensure that the connectivity variables are properly
set, and constraints (28) and (29) are the flow constraints, directly analogous to
constraints (2)—(4).

We implemented the four models in this section to solve the connected min-
imum energy problem. The results are given in Section 5.

4 Exact k-connected models

In this section, we extend these models to the k-connected case. To begin, it is
obvious that a network is connected if and only if we can find a spanning tree
in it. This leads us to the following observation.

Observation 4.1 A network is k-connected if and only if we can remove any
combination of k — 1 nodes and find a spanning tree for the remaining nodes.

There are (k“:ll) such combinations.

This translates easily into extensions for the integer programs in Section 3.
Firstly, we define the superset L to contain all sets with k& — 1 nodes. We now
have to apply connectivity constraints for each [ € L. We do this by attaching
a sub- or superscript [ to each connectivity variable involved in the constraints,
and applying those constraints to the node set V'\l. We denote the corresponding
edge set by A!, and if we have to choose a source node, we denote it by s' & [.

For the MG1 model, we replace constraints (2)—(5) by the following con-
straints for each [ € L:

xi (|V| - k)yw v (27]) € Al7 (32)
SEﬁ (V| = k)yji V(i,j) € A, (33)
L [ IV|-kifi=s,
Z Tij - { -1 otherwise, (34)

Ji(ig) €A 303, l)GAL
a: e R (35)
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Similarly, for the MG2 model, we replace constraints (8)—(11) by:

Zﬁj < Yij Y (i,5) € Al
25 < Yji v (i, 5) € Al
> ;21 VSVl
{i,j}EALi€S,jEV\(IUS)
z € {0,1}.

(39)

For the YBH model, we set D' = V\{l,s'} and replace constraints (19),

(23)-(24) by:

1 ifi=s,
Yoo Y afl={ liti=d,  VieV\l,VdeD,
VHOMISEY G:(4,i) €A 0 otherwise,
@iy < i V(i,5) € A',d € D',
d,l
z;; > 0.

Finally, for the BSC model, we replace constraints (28)—(30) with:

iy < (IVI=k)yiy v (i,j) € A,
I [ ‘V‘*k‘ifi:sl .
> wy = D ali= {_1 othornise Vi€ (ADLCY,
JEVAD le(V\D)
xi] czZt.

(40)

(41)

(42)

(43)

(44)

The sizes of these models with respect to the number of variables and con-

straints are in Tables 1 and 2.

MG1 MG2 YBH BSC
1-connected on? on? ns on?

T EFT T EFT T E¥2 T EFT
k—connected (kil)!n (k71>!n WTL Wﬂ

Table 1. The asymptotic number of variables for each problem.

MG1 MG2 YBH BSC
1-connected 3n? 2" n® gnQ
k-connected ﬁnkﬂ ﬁ?‘nk*l (k_ll)!nkJrl +n? ﬁnkﬂ

Table 2. The asymptotic number of constraints for each problem.
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5 Numerical results

We wish to determine the practical implications of the theory discussed here.
For instance, we would like to know the limits of the models in terms of the size
of k and |V| that we can solve with these models in a timely manner.

We implemented all the models in Xpress-Optimiser (version 18.10.00) and
ran 50 randomised networks for network sizes ranging from 5 to 20. In Figure 2,
we provide an illustration of the optimal networks as the connectivity require-
ment progresses from 1- to 3-connected. We have used the Euclidean distance to
calculate the distance between nodes. This means that the outer nodes gener-
ally have a much larger transmission radius than the inner nodes, because they
have fewer neighbouring nodes. This issue can be addressed by using toroidal
boundary conditions.

All four models were run on the same data sets, allowing us to compare the
results here. For the 1-connected problems, the best performer of the four models
was the MG1 formulation, which solved network sizes of 18 nodes in a short
computation time (under 10 minutes each). The BSC and MG2 formulations
produced similar results to each other, with MG2 ahead in computational time,
but achieving the same maximum network size. The YBH formulation was clearly
the worst performer (Figure 3).

From Figure 3, it is clear that the computation time grows asymptotically
exponentially with the network size. We fitted regression lines to the observed
data and produced the following relations, where t is the time and n the number
of nodes:

MG1: ¢t~ 0.00104 x 1.959™
MG2: ¢~ 0.000423 x 2.622"
YBH: ¢ ~ 0.000429 x 3.237"
BSC: t ~ 0.0000273 x 3.593"

The MG1 formulation clearly has the smallest growth constant. The next
best models, in order, are MG2, YBH, and BSC. It should be noted though that
for these models, the available data is limited and they could well have very
similar growth constants. However, it is safe to say that the MG1 formulation is
the most efficient for the 1-connected problem.

For the 2-connected experiments, we removed the worst performing YBH
model and ran the remaining three. Once again, the MG1 model achieved the
best results, solving networks of up to 15 nodes in a short time (under 10 min-
utes) (Figure 5). Again, the computation time appears to have an exponential
relationship with the network size. The fitted relationships are:
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Fig. 2. The 1-, 2- and 3-connected optimal networks for an 11-node problem.
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Log-plot of 1—connected results

— MGt
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Fig. 3. A log-plot of the 1-connected solution time vs. network size.

MG1: t ~ 0.00230 x 2.178"
MG2: ¢ ~ 0.000182 x 3.701™
BSC: ¢ ~ 0.0000269 x 4.894"

Again, the models in order from slowest to fastest growth are MG1, MG2,
BSC. While the MG2 and BSC models have similar solution times, the BSC
model appears to have a substantially higher exponential growth.

For the 3-connected experiments, we ran the same models as before. The
results are very similar to that for the 2-connected results: the MG2 and BSC
models performed very similarly (Figure 5), while the MG1 model was the fastest
and achieved solutions for larger networks within our 10 minute limit. Again,
the growth constants show the same pattern: the MG1 model has the smallest
growth constant, while the MG2 and BSC models have roughly the same growth.

We compare the most efficient model (MG1) for k = 1, 2 and 3 in Figure 5.
There is a noticeable intersection between the 2- and 3-connected solutions. This
indicates the reduced computation required when the k is close to the size of
the network. This can be seen by observing that k-connectivity requires that the
network be connected when we remove any set of £ — 1 nodes. There are (k“j‘l)
such sets, which decreases when 2k > |V/|. From this figure, we can see that it
takes longer to solve the problem as k increases. This is explained in Section 5.1.
However, it is not obvious that the growth constant increases with k& — this may
in fact not be the case.
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Log-plot of 2-connected results
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Fig. 4. A log-plot of the 2-connected solution time vs. network size.

Log-plot of 3-connected results
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Fig. 5. A log-plot of the 3-connected solution time vs. network size.
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MG1 Results for k = 1,2,3

10° £
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I
4 6 5 10 12 14 16 18 20
Number of nodes

Fig. 6. The 1-, 2-, and 3-connected solution times for MG1.

5.1 Computational complexity

In order to determine the computational complexity of the minimum energy
problem, we consider the following decision problem:

Does there ezist a range assignment such that the network is k-connected,
but not (k + 1)-connected?

Several polynomial reductions from known NP-complete problems (such as
the vertez-cover problem) to this decision problem exist ([3], [11], [6], [7]). Fur-
ther, it is easy to see that we can verify a solution in polynomial time. Therefore
the decision problem is A/P-complete. The optimisation version of this problem
is:

What is the minimum transmission range assignment such that the net-
work is k-connected?

This version of the problem is necessarily N'P-hard, as we cannot verify a
solution in polynomial time. In other words, this problem does not belong to
the class of problems that can be solved on a nondeterministic Turing machine
in polynomial time — it is much more difficult. Although Shpungin and Segal’s
([15]) approach will, in most cases, have this computational advantage, we should
remember that it is an approximate method.

6 Discussion

In this paper, we have collected mixed-integer programs for the minimum energy
problem, and then extended them into models for the k-connected minimum
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energy problem. We implemented these models in XPress-Optimiser, and solved
them for varying network sizes.

It is clear that the time taken to solve the minimum energy problem grows
exponentially with network size. Of the four models, MG1 appears to be both
the fastest and the model with the slowest growth rate for all levels of connec-
tivity. Therefore, we would look to use this model and its extensions in future
experiments.

As it stands, the largest network size that we solved is 18 nodes, although
this could be extended if we used more computational power. It is clear that a
network of this size will have very limited real-world applications, so our models
are currently limited to academic and experimental use. It may be possible to
increase the solvability of our models with solution techniques such as starting
from a heuristic solution, or applying more cutting techniques. We are currently
investigating these possibilities.
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